On $GPW$-Flat Acts

نویسندگان

  • Hamideh Rashidi Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.
چکیده مقاله:

In this article, we present $GPW$-flatness property of acts over monoids, which is a generalization of principal weak flatness. We say that a right $S$-act $A_{S}$ is $GPW$-flat if for every $s in S$, there exists a natural number $n = n_ {(s, A_{S})} in mathbb{N}$ such that the functor $A_{S} otimes {}_{S}- $ preserves the embedding of the principal left ideal ${}_{S}(Ss^n)$ into ${}_{S}S$. We show that a right $S$-act $A_{S}$ is $GPW$-flat if and only if for every $s in S$ there exists a natural number $n = n_{(s, A_{S})} in mathbb{N}$ such that the corresponding $varphi$ is surjective for the pullback diagram $P(Ss^n, Ss^n, iota, iota, S)$, where $iota : {}_{S}(Ss^n) rightarrow {}_{S}S$ is a monomorphism of left $S$-acts. Also we give some general properties and a characterization of monoids for which this condition of their acts implies some other properties and vice versa.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Regularity of Acts

In this article we give a characterization of monoids for which torsion freeness, ((principal) weak, strong) flatness, equalizer flatness or Condition (E) of finitely generated and (mono) cyclic acts and Condition (P) of finitely generated and cyclic acts implies regularity. A characterization of monoids for which all (finitely generated, (mono) cyclic acts are regular will be given too. We als...

متن کامل

Axiomatisability of free, projective and flat S-acts

We survey the known results characterising those monoids S such that the classes of free, projective or (weakly, strongly) flat S-acts are first order axiomatisable. The conditions on the monoid S that arise are finitary, and intricately related. We examine their inter-connections and illustrate the independence of certain pairs.

متن کامل

A short note on strongly flat covers of acts over monoids

Recently two different concepts of covers of acts over monoids have been studied by a number of authors and many interesting results discovered. One of these concepts is based on coessential epimorphisms and the other is based on Enochs’ definition of a flat cover of a module over a ring. Two recent papers have suggested that in the former case, strongly flat covers are not unique. We show that...

متن کامل

On the U-WPF Acts over Monoids

Valdis Laan in [5] introduced an extension of strong flatness which is called weak pullback flatness. In this paper we introduce a new property of acts over monoids, called U-WPF which is an extension of weak pullback flatness and give a classification of monoids by this property of their acts and also a classification of monoids when this property of acts implies others. We also show that regu...

متن کامل

SEQUENTIALLY COMPACT S-ACTS

‎‎The investigation of equational compactness was initiated by‎ ‎Banaschewski and Nelson‎. ‎They proved that pure injectivity is‎ ‎equivalent to equational compactness‎. ‎Here we define the so‎ ‎called sequentially compact acts over semigroups and study‎ ‎some of their categorical and homological properties‎. ‎Some‎ ‎Baer conditions for injectivity of S-acts are also presented‎.

متن کامل

Speech Acts On Trial

In this document we discuss the applicability of speech act theory as a theoretical foundation for the design of information technology (IT). We pay special attention to the adaptation speech act theory has undergone when applied in the IT-field. One question we address concerns what happens when we import passive descriptive theories from other disciplines and use them as a basis in active des...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 12  شماره 1

صفحات  25- 42

تاریخ انتشار 2020-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023